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ABSTRACT

The coalescence of two, initially stationary drops of different size is investigated

by solving the unsteady, axisymmetric Navier-Stokes equations numerically, using a

Front-Trazking/Finite Difference method. Initially, the drops are put next to each

other and the film between them ruptured. Due to surface tension forces, the drops

coalesce rapidly and the fluid from the small drop is injected into the larger one. For

low nondimensional viscosity, or Ohnesorge number, little mixing takes place and the

small drop fluid forms a blob near the point where the drops touched initially. For low

Ohnesorge number, on the other hand, the small drop forms a jet that penetrates far

into the large drop. The penetration depth also depends on the size ratio of the drops

and we show that for a given fluid of sufficiently low viscosity, there is a maximum

penetration depth for intermediate size ratios.



I. INTRODUCTION

The motivation for the present work is an experiment presented recently by Anilku-

mar, Lee, and Wang (1991). In their study, two drops of the same fluid, but of unequal

size, were slowly brought together until the film between them ruptured and the drops

coalesced. The fluid motion following the rupture was recorded on a video tape, and

by coloring the fluid in the small drop the resulting flow could be observed. For high

viscosity drops the fluid from the smaller drop simply became a fiat blob inside the

large drop near the point of initial contact, but for low viscosity drops the fluids mixed

considerably. This was due to the formation of a jet of the fluid from the small drop,

that was injected into the large drop by the action of surface tension. Anilkumar et al

did not investigate the mixing of the two drops in any detail, turning their attention

instead to the coalescence of a single drop with a flat interface. Here, we extend

the study of Anilkumar et al by simulating numerically the fluid motion in the drops

following the rupture of the film between them.

The post-rupture behavior of drops of different size, in particular the flow within

the drops, appears to have received relatively little attention. Apart from the report

by Anilkumar et al, we have only found a brief description in a paper by MacKay

and Mason (1963), who were primarily interested in the time of rupture and whether

the coalescence lead to a secondary drop. They therefore did not address the mixing

of the fluids at all. Two related problems have, however, been extensively examined;

the coalescence of equal size drops, and the coalescence of drops with a free surface

or a fluid interface. These investigations can be further divided into collisions where

the drops approach each other (or a fluid interface) with a finite velocity and the case

where the drops are brought together sufficiently slowly so that the initial kinetic

energy is negligible. For the problem of interest here, the latter case is of most

relevance. For a discussion of the former, see Nobari, Jan, and Tryggvason (1993)

and Azhgriz and Poo (1990) for the collision of two drops, and Rein (1993) for the

collision of a drop with a free surface.



The focus of research on the coalescence of equal size drops, brought in contact

slowly, has been mainly on the draining of the film between the drops and the time

of rupture of this film. Experimental measurements (MacKay and Mason, 1963, for

example) predict that this spontaneous rupture of the film occurs when the film thick-

ness is about 0.05_m. Recent work on this problem, as well as several references, can

be found in Yiantsos and Davis (1991) and Jacqmin and Foster (1993), for example.

The generation of vortex rings by drops colliding with a flat interface has been

studied by a number of authors. One of the earliest such investigations is due to

Thomson and Newall (1885) who found that drops falling into a pool of liquid form

vortex rings only at small impact velocities. Higher velocities lead to a splash and

a relatively small penetration depth of the drop fluid. The question of how rapidly

small drops fall to a fiat interface and coalesce with it is of relevance to the stability

of emulsions, and a number of investigations in the fifties and sixties examined the

problem in that context. Here, a drop approaches an interface with nearly zero

velocity and the main question is how fast the film of fluid between the drop and the

interface drains and ruptures. Examples of these studies can be found in Gillesepie

and Rideal (1956) and Nielson et al. (1958), and Charles and Mason (1960), for

example. The last authors found that in some cases the coalescence is completed

in several stages, where a part of the initial drop coalesces and the rest generates a

secondary drop. This process continues until the remaining drop coalesces without

forming a secondary drop. None of these authors appears to have considered the

subsequent mixing of the liquids. An example of a more recent study can be found in

Chapman and Critchlow (1967) who investigated the formation of vortex rings from

falling drops, and concluded that the shape of the drop at the moment of contact

has great effect on the formation of the vortex ring. This was investigated further

by Rodriguez and Mesler (1988) who also found that the shape had considerable

influence on the vortex ring formation, but gave a different explanation than Chapman

and Critchlow. The boundaries between the regimes where drops colliding with an

interface form a vortex ring and where they splash has been investigated by Rodriguez



and Mesler (1985) and Hsiao, Lichter, and Quintero (1988), for example. Anilkumar

et al (1991) examined drops that approach an interface with essentially zero velocity

and developed a corrilation for the penetration depth. For a recent review of the

litterature on drops colliding with a liquid surface, including a detailed discussion of

when drops splash and when they form a vortex ring, see Rein (1993).

In this paper we focus on the fluid mixing due to the coalescence of a large and a

small drop. We simulate the motion of several pairs and examined how far the fluid

from the small drop penetrates the larger one, as a function of the size ratio of the

drops and the nondimensional viscosity. In section II we formulate the problem and

describe our numerical method briefly. Results and discussions are in section III, and

section IV contains our conclusions.

II. FORMULATION and NUMERICAL METHOD

The coalescence of two drops is a complicated process where it is necessary to

account for several physical processes simultaneously. The drops are driven together

by surface tension; inertia and viscosity determine the resulting mixing of the fluids;

and surface tension and inertia govern the resulting oscillations. The solution of this

problem therefore requires the full Navier-Stokes equations.

The momentum equations, considering the motion of both the drop and the ambi-

ent fluid, allowing discontinuous viscosity and density, and including surface tension

forces, can be expressed as one set of equations. For axisymmetric flows these are:

Opv.. 1 0 2 0
o---i-+ r _ rpv_+ _pv_v_ =

Op 0 Ov_ 0 ,v, , 0 [ Ov, Ov_,_
-o-7 + N2"-_-r + 2._ [-_) + _"/-_-_ + -b-2' + F_

Opv, 1 0 0 2

Op 1 0 r Ov_ Ov_ _ 0 2 Ova
- Oz + 7 N "r _,--_r+ -g-Sz' + _ " Tz + F_

(1)

(2)
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Here, z and r are the axial and the radial coordinate, respectively, and vz and v, the

corresponding velocity components, p is the pressure, and p and # are the discontinu-

ous density and viscosity fields, respectively. F = (F,, Fz) is the surface tension force

and only acts where the fluid interface is. F can be written in the following form:

F = fF - °i')a"(x - x')dsr (a)

where i, is a unit vector in the r-direction, t is a tangent vector to the drop surface

in the (r, z) plane, a_, is a two-dimensional delta function and x = (r, z). xF is the

position of the interface.

The above equations are supplemented by the incompressiblity condition

10 0

orrV, + 0 (4)r _ZZ vz --

which, when combined with the momentum equations leads to a non-separable elliptic

equation for the pressure. We also need equations of state for the density and viscosity,

which in our case are:

D___pp= 0; D# = 0. (5)
Dt Dt

These equations simply state that density and viscosity within each fluid remains

constant at all times.

The nondimensional parameters describing the coalescence of two drops of different

size are the size ratio of the drops and the Ohnesorge number, which can be interpreted

as a nondimensional viscosity:

£ = d,/D; Oh- I_d (6)
V"a-pdd,

Here, #_ is the viscosity of the drops, d is the drop diameter, and D = (d 3 + da,) 1/a is

the diameter of the drop that results after the small and the large drop have coalesced.

The subscripts s and l refer to the small and the large drop, respectively. Obviously,

we could have selected either dl or D for Oh, but as the subsequent discussion will

show, d, is the most natural choice. To completely specify the problem, the density

ratio, po/pd, and the viscosity ratio, #o/p_, must also be given.



After the drops coalesce, the combined drop oscillates. The period of oscillations,

VD, plays a major role in determining the time scale of the motion and we will compare

our results with Lamb's (1932) formula:

PfP-J (71
r,, - _/n(n - 1)(n + 2) V

Here, n is the order of the mode and the lowest oscillatory mode has n = 2. Other

authors have extended this formula to include the density of the outer fluid and

discussed the effects of nonlinearities and viscosity. In our case these corrections have

only secondary influence. When we present our results, time is given in units of

T D : Yn= 2.

For low viscosity, the oscillations of the resulting drop are reduced slowly and it

would require a long time to compute the evolution until the final stationary state.

Since a relatively fine grid is necessary, such computations would be excessively de-

manding on our computational resources. To shorten the computations we set the

viscosity of the ambient fluid higher than the viscosity of the drop fluid. This leads

to a high damping of the drop oscillations, but has little effect on the mixing process.

In some experimental studies of drop coalescence, a high viscosity host fluid has been

used to allow the drops to be brought in contact slowly (Anilkumar et al., 1991).

To solve the Navier-Stokes equations numerically, we use a finite difference/front

tracking method developed by Unverdi and Tryggvason (1991a,b). The actual code

is an axisymmetric version of the method written by Y.-J. Jan (Jan, 1994). The

method is based on solving a single set of equations (equations 1 and 2) for the whole

computational domain, both inside and outside the drops. By adding the surface

tension force by a delta function the correct stress boundary conditions are implicitly

enforced. We use a regular, fixed, staggered mesh; a second order, centered difference

approximation for all spatial derivatives, and a simple explicit, first order method for

the time discretization. We have also used a second order time integration for other

problems and generally find little differences for short times as those simulated here.

Instead of solving equations (5) to update the deIigity and viscosity field directly,



we introduce a line of connectedmarker particles, or a front, that moves with the

fluid and marks the boundary of the drops. At every time step the density and

the viscosity field are updated using the new position of the front by a technique

described in Unverdi and Tryggvason (1991). The front is also used to compute the

surface tension forces, which are then assigned to the grid points next to the front

and used to compute the new velocity field. Both the method and the code have been

extensively validated by comparison with linear solutions, by comparison with other

numerical studies (Ryskin and Leal, 1984, for example), and by examining the rate of

convergence under grid refinement. For a discussion of some of these tests, as well as

other applications of the method see, for example: Unverdi and Tryggvason (1991a,b)

who simulated the rise of buoyant bubbles and the three-dimensional collision of two

bubbles; Jan and Tryggvason (1993) who examined the effect of contaminant on

the rise of axisymmetric bubbles; Nobari, Jan and Tryggvason (1993) and Nobari and

Tryggvason (1993) who simulated the collision of axisymmetric and three-dimensional

drops; and Nas and Tryggvason (1993) who computed the thermal migration of many

bubbles. The computations presented here were done on an HP735 workstation. The

time required for each runs depended on Oh, but was about three days for the highest

Oh used.

III. RESULTS and DISCUSSION

Figure 1 shows a sketch of the computational setup. The domain is an axisymmet-

ric cylinder of length three times its radius and the diameter of the large drop is half

the diameter of the cylinder. The domain is resolved by a regular, staggered mesh,

and for the computations presented here we have used a 100 by 300 grid. Several of

the computations have also been repeated on coarser grids. For the lower values of

Oh little differences are observed, but for the highest values of Oh, small oscillations

appear near the centerline at lower resolution. The rest of the solution is minimally

affected. The density of the drops is twenty times the density of the ambient fluid in

all the computations presented here, and the viscosity ratio, the Ohnesorge number,



and the sizeratioare listedin the figurecaption. Initially,the drops are placed next

to each other with the centers of the drops two percent closerthan half the sum

of the radii. The surfaces that overlap are removed to form a small opening, or a

connecting hole, between the drops. Thus, we completely sidestep the question of

when the film between the drop ruptures. We have examined the effectof the sizeof

this opening and found that once it issufficientlysmall, as it ishere, the resulting

motion isindependent of itssize.Once it becomes larger,however, the initialsurface

tension energy isreduced and thiscauses lesspenetration of the fluidfrom the small

drop. Since the drops are initiallyspherical,the contact area isrelativelysmall and

while it ispossible that small drops are generated during the initialenlargement of

the original rupture, (as discussed by Oguz and Prosperetti, 1990, for example) we

assume that those are sufficiently small so that they do not affect the rest of the

evolution. We also assume that any non-axisymmetric aspect of the actual rupturing

quickly dissappear as the neck is pulled outward. This is in line with the observations

of Anilkumar et al.

Figure 2 and 3 show the coalescence of two drops, where the small drop diameter is

half the diameter of the large drop, for two values of Oh. In figure 2, Oh = 0.0162 and

in figure 3, Oh = 0.0024. Although the computations are axisymmetric, the figures

are given a fully three-dimensional appearance by rotating the surfaces around the

symmetry axis. The large drop is transparent but the small drop is not. In both

cases, the small drop is rapidly pulled into the large drop, causing it to oscillate.

Since the outer fluid has a high viscosity, these oscillations die out rather quickly.

The major difference between the two simulations is the viscosity of the drop fluid.

In figure 2 it is high and the small drop eventually forms a stationary blob at the

point where the drops touch initially. In figure 3, on the other hand, the viscosity is

low and the fluid from the small drop forms a jet that penetrates to the other side

of the large drop. This evolution is quantified in figure 4 where the distance between

the poles of the combined drop and the length of the blob of fluid from the small drop

are plotted versus time. The results for the run in figure 2 is shown in (a), and (b)
° .



corresponds to figure 3. Similarly, figure 5 shows the energies, non-dimensionMized

by the combined initial surface tension energy of both drops, for both cases. The left

column corresponds to figure 2 and the right column to figure 3. In the top row, the

surface energy, kinetic energy and the total energy for the combined drop is plotted

versus time and in the bottom row the kinetic energy of the fluid from the small drop

is plotted separately, along with the total kinetic energy.

The results in figures 2-5 provide a detailed picture of the coalescence process:

The initial coalescing of the drops takes place in two stages. First, the "waist" where

the drops touch, is pulled outward due to the high curvature around the initial hole.

Fluid to fill this space is drawn from both the small and the large drop, leading to

considerable reduction in the diameter of the small drop. Once this initial motion is

completed (second frame in figures 2 and 3) the small drop is pulled into the large drop

extremely rapidly. This "pull-in" is shown by the rapid shortening of the maximum

distance between the poles of the combined drop in figure 4, and the small drop has

been completely engulfed into the large drop at about t=0.3 for both the low and

the high viscosity case. The time it takes for the large drop to swallow the little one

is thus very close to the period of oscillation for the lowest order mode of the small

drop. In the units used here--the periode of oscillation of the final drop--this periode

is 0.33. The injection of the small drop is accompanied by a rapid decrease of surface

tension energy (figure 5). At the same time, the kinetic energy of the small drop

(figure 5-bottom row) increases rapidly, peaks, and then decreases equally rapidly.

Notice that the rate of dissipation of total energy is increased sharply as the kinetic

energy of the small drop increases, but that its decay rate falls back to normal after

the maximum is reached, indicating that some of the loss of the kinetic energy from

the small drop goes to increase the kinetic energy of the fluid in the large drop. Since

the outer fluid has a larger viscosity, the oscillations of the resulting drop are damped

quickly.

This relatively complex initial motion is nearly identical for both the high and the

low viscosity case. Indeed, the only difference is the higher kinetic (and therefore



total) energy for the low viscosity simulation. Following the initial injection, the

motion of the fluid from the small drop depends strongly on the viscosity. In figure 2,

where the viscosity is high, its kinetic energy is quickly dissipated and the fluid from

the small drop simply remains where it was injected. For the low viscosity fluid, on

the other hand, the vorticity injected during the engulfment of the small drop drives

the blob into the large drop, forming a jet with a vortex ring at its tip. The vorticity

eventually diffuses and at the end of the run the fluid from the small drop simply

moves with the large drop as it oscillates. While the mixing in these two cases is

very different, the oscillations of the resulting drop are similar. The motion of the

more viscous drops falls off slightly faster, but overall the damping of the oscillations

seems to be mostly due to the high viscosity of the outer fluid. The period of the

final large scale oscillations is nearly equal to T,_=2, but initially, higher modes are also

seen. The shape of the drop in figures 2 and 3 suggests that the n = 3 mode (with

two times the frequency of the fundamental mode) is excited by the initial conditions,

and the graphs in figure 4 and 5 indicate the presence of even higher modes. All but

the lowest order modes are quickly damped.

The flow induced by the low viscosity jet in figure 3 is shown in figure 6, where the

streamlines for both the drop and the ambient fluid is shown at two times. In the first

frame, at t=1.25, the bottom and the top of the drop are moving downward; the lower

side of the drop is moving inward and the upper side outward, thus characteristic of a

n = 3 oscillation. Near the tip of the jet, the streamlines form a closed loop, enclosing

the vorticity there. In the other frame, at t=2.5, the jet has nearly reached the top

of the drop. The boundary of the fluid from the small drop has rolled up to form a

vortex ring and the circular streamlines show that there is still some vorticity present

near the tip of the jet. The flow field has also changed. The top of the drop is now

moving down and the bottom is moving up as the middle of the drop moves outward,

due to a n = 2 oscillation. Notice, that as the jet moves into the drop, there is a small

backflow near the base of the jet and a small striation of the outer fluid is entrained

into the jet.

l0



The evolution of drops of a different size ratio (d,/D = 0.667) is shown in figure

7, where the surface of the drops and the boundary between the fluids from the large

and the small drop are shown at selected times. The viscosity of the drops is relatively

low here, Oh = 0.002, so if the ratio of the diameters was the same as in the previous

computations we would expect a jet that penetrated all the way across the large drop.

While the overall evolution is similar to figure 3, there are noticeable differences. The

initial engulfment of the small drop causes large deformation of the large drop, and

although a jet is formed, it does not form a vortex ring and does not penetrate all the

way across the large drop. The entrainment of fluid from the large drop near the base

of the jet is stronger and this striation rolls up, indicating the presence of vorticity

within the blob of fluid from the small drop. Figure 8a shows the distance between

the top and bottom of both the combined drop and the fluid from the small drop (as

in figure 4), and figure 8b shows the surface tension, kinetic, and total energy for the

combined drop (as in figure 5-top row). The major difference between the evolution

here and the runs in figures 2 and 3, where the size difference is larger, is that the

oscillations of the drop are both larger in amplitude and contain less of the higher

order modes. Obviously, if the drops were of exactly equal size, only the even modes

would be excited and while the drops are not of the same size, they are sufficiently

close so that this is still the case.

The quantity that is most easily observed experimentally is the eventual penetra-

tion depth of the fluid from the small drop, L. For a given Oh, two limits are easily

determined. As the small drop becomes very small, viscosity must eventually dom-

inate the evolution so LID ---, 0 as ds/D ----,O. In the other limit, the drops are of

equal size and since there is no penetration, by symmetry, we must have L/D _ 1/2

as ds/D ---, _/_ -- 0.794. For small drops, we expect the size of the large drop to

have little influence on the evolution and the results of a drop coalescing with a flat

interface should apply. Anilkumar et al (1991) found that the penetration depth was

well described by
L K

- (7)
ds
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where K = 0.68 yielded a best fit to their experimental results. Rewriting this in our

variables gives

L_ K ds (10)
D v/'O-h D

so the penetration depth goes to zero linearly with a slope that depends on Oh for

small drops. The simplicity of this expression is the main reason for using d, in

Oh--any other choice would have lead to a more complex dependency on the size

ratio. Figure 9 shows the numerically computed penetration depth, L/D, versus the

ratio of the small drop diameter to the diameter of the combined drop, ds/D, for

several values of Oh. We have not computed the evolution for very small drops since

this would require very fine resolution, but we do include the limit predicted by the

experiments of Anilkumar et al (1991) as solid lines to the left of the graph, near

the origin. We note that for a given Oh, the penetration depth has a maximum for

intermediate ds/D. In more physical terms, this means that the penetration depth is

largest when the small drop is neither very small nor comparable in size to the large

drop. This conclusion is obviously only valid for drops of relatively small viscosity

(small Oh). For very viscous drops the penetration depth varies monotonically from

zero for small ds/D to a half for drops of equal size. The shaded region at the bottom

of the graph is the minimum penetration depth, obtained by assuming that the surface

separating the fluids in the final drop is flat. The dashed line is an extrapolation from

our data and the correlation of Anilkumar et al for Oh=0.0024.

Although we expect the computations presented here to give a fairly complete pic-

ture of the evolution in the range of size ratios and Oh simulated, we are--as always in

computational investigations--limited by the available resolution to situations where

the ratio of the largest to the smallest scale is not too large. Here, this prevents us

from going to very low Oh and ds/D. While there is no reason to believe that any

new phenomena will be observed at large ds/D (drops of similar size) by lowering

the Oh further, two aspects of the evolution for small ds/D are outside the range of

parameters that we have simulated. For very large ratio of the drop diameters (small

ds/D), it is possible for the drops to undergo partial coalescence (if the viscosity of

12



the drop and the ambient fluid are similar) where only a part of the small drop is

engulfed into the large one, leaving a small secondary drop. This was seen by MacKay

and Mason (1963) for a drop coalescing with a flat interface. The second possible new

phenomena is if the jet penetrates through the large drop and forms another drop on

the other side. The formation of drops by a vortex ring colliding with a fiat interface

has been investigated by Bernal, Maksimovic, Tounsi, and Tryggvason (1994) and

based on those results we would only expect this to happen at very low Oh and small

ds/D. Even if the jet reaches the other side of the drop and forms a "bulge" there,

it is likely that in most cases this "bulge" would be pulled back into the large drop

and that L/D = 1 is a practical upper bound for the penetration depth.

IV. CONCLUSIONS

We have computed the coalescence and mixing of two drops for different size ratios

and different values of the nondimensional viscosity, Oh. The computations show that

the fluid from the small drop forms a jet that can penetrate far into the large drop

for intermediate size ratios and low dissipation. This jet can lead to a relatively large

mixing between the fluids from the small and the large drop. For larger dissipation

the fluid from the small drop forms a "blob" near the original injection point and little

or no mixing takes place. For drops of nearly equal size, little mixing takes place and

for very small drops, viscosity dissipates the jet quickly. We have only computed the

evolution for a relatively few cases and while these results do not provide the function

LID = f()_, Oh) in detail, the general shape is clear. The results agree well with the

experimental results of Anilkumar et al (1991), but detailed quantitative comparison

is not possible since little data was reported by them.

The results here show well the fundamental role the frequency of oscillations of the

lowest mode plays for droplet motion. The initial coalescence process is well predicted

by the period of the small drop and while higher order modes are triggered initially,

the resulting drop eventually oscillates with its fundamental frequency. We note that

similar dependency is found for bouncing collision of drops where the collision time is

13



nearly equal to the period of the lowest oscillatory mode, even when large deformation

Occurs.

The dynamics of the coalescence and the subsequent mixing process depends on

viscosity,inertiaand surface tension,and accurate simulation of the process requires

solutions of the fullNavier-Stokes equations. As such, thisproblem is an excellent

testcase for the method used here and the resultssuggest that the technique iswell

capable of resolvingallthe important physical processes.
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Figure 1. A sketch of the computational setup. The domain is an axisymmetric

cylinder of length three times its diameter. The diameter of the large drop is half the

diameter of the cylinder.
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Figure 4. Axi_LI distance, penetration depth, and their ratio, versus time. Oh = 0.0162

in (a) and Oh = 0.0024 in (b). Non-dimensional time is based on rD, the fundamental
period of oscillation of the coalesced drop.
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Figure 5. Top row: Non-dimensional kinetic, surface tension, and total energy versus

time for the drops in figures 2 and 3. Bottom row: Total kinetic energy and the kinetic

energy of the small drop versus time. Left column: Oh = 0.0162. Right Column:

Oh = O.OO24.
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Figure 6. The streamlines for the low viscosity drops in figure 3 at times t/TD = 1.25

(left) and t/1"D = 2.5 (right).
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Figure 7. The evolution of two drops of unequal size following coalescence. Here,

the viscosity of the drops is low, Oh = 0.002, and the fluid from the small drop is

ejected across the large drop. d,/D = 0.667, Pa/Po = 20.0, and Pd/#o = 0.1. Only

part of the computational domain is shown.
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drops in figure 7. (b) Non-dimensional kinetic, surface tension, and total energy based

on initial surface tension energy versus time for the drops in figure 7.
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of the combined drop for several values of Oh. The penetration depth can not be inside

the cross-hatched region. The solid circles connected by solid lines are obtained by the

numerical simulations, and the solid lines near the origin are experimental results for

a drop coalescing with a fiat interface. The dash lines are interpolations based on the

numerical and experimental results for two Oh.
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